
International Journal of Scientific & Engineering Research, Volume 6, Issue 3, March-2015 756
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

Transfer of Knowledge Pod before Code
Construction for Effective Defect Management

Bhagavant Deshpande, Dr Suma V

Abstract- The software industry is facing multiple challenges to reduce the cost of production of software and to increase the
quality of production. This can be achieved by working smartly through better models of process than applying conventional
practices. Since, high quality software has one of the dimensions being defect-free, it is required for all software developing
organizations to ensure development of software with minimal or negligible defects. To address defects, there are several
strategies which all organizations are following in their developmental process. However, there are still defects which get injected
during the process and make the software to be not up to the satisfaction of the customers. Therefore, an empirical investigation is
carried out in various software industries in order to study the impact of pre-production defects. Investigation results have further
led towards introduction of knowledge pod as an integral part of software development process. This paper however has brought
out the need for integration of knowledge pod before code construction phase of software development process. Implementation
and stringent follow up of knowledge pod ensures reduced defect injection rate and hence leads towards developing high quality
software resulting in total customer satisfaction.

Keywords— Software Engineering, Software Life Cycle, Software Quality, Defect Detection and Prevention, Software Testing,
Software Quality Assurance and Control

—————————— ——————————

Introduction

Since, high quality software has one of the dimensions
being defect-free, it is required for all software
developing organizations to ensure development of
software with minimal or negligible defects. The basic
reason being this as objective of software organizations
is to ensure total customer satisfaction. Any
organizations who fail to attain customer satisfaction
will not be able to continue their business in the market.
Hence, main motto of all organizations in the business
market is to develop customer satisfied software
products [1][2].

• Bhagavant Deshpande is a research scholar at JJTU Rajasthan in

computer science and engineering in India.
E-mail: deshcapricorn@gmail.com

• Dr Suma V is currently, Head of Dayanandsagar Research and Industry
incubation Center India. E-mail: sumavdsce@gmail.com

To address defects, there are several strategies which all
organizations are following in their developmental
process [3][4]. However, there are still defects which get
injected during the process and make the software to be
not up to the satisfaction of the customers. There are
various reasons as to why the defects get injected at
every phase of software development. Poor
performance of business analysts makes requirements
engineering process not to be perfect. Political reasons,
economical conditions, standards, and technology to
name a few are some of the reasons why requirements
engineering are not successful. Further, requirements
misunderstood, ambiguity, misconception, mis-
interpretation, amalgamation of requirements, poor
understanding of the concepts, unaware of the concepts
etc also adds to make requirements engineering process
a not successful phase. Due to these mistakes in
requirements collected, understood, analyzed and
specified, defects gets injected at the phase of
requirements engineering process in the software
development.

Defects gets injected in design process due to
architectural decision decisions, lack of domain
knowledge of the designers, lack of expertise and
knowledge of metrics, measurements and relationships

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 6, Issue 3, March-2015 757
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

between the components in the system, makes design to
be flaw full. Portability issues, interoperability issues,
platform issues, dependency issues and other such lack
of quality attributes in the design makes the design to
have defects.

Since, requirements defects gets propagated if
unnoticed, it gets into design and ultimately into the
code construction phase. Though, steps have to be
formulated to reduce this propagation, this research
aims only at defect reduction at code construction phase
such that ultimately pre-production defect count is
reduced. Further, this knowledge in code construction
phase enables one to at least take measures to remove
all defects introduced at previous phases of software
development.

Therefore, this research focused upon understanding
the defect and its various facets during software
development process thereby enabling to provide an
effective strategy to reduce defect injection rate during
pre-production activities.

Literature Survey

In order to comprehend defect facets, it is essential to
have knowledge of defect pattern at various phases of
software development. Since, defect has the tendency to
propagate and magnify, early defect detection prevents
defect migration from requirements phase to design and
from design phase into implementation phase [5]. It
enhances quality by adding value to the most important
attributes of software like reliability, maintainability,
efficiency and portability [6].

[7]Spiewak and McRitchie suggest that the best practice
of identification and fixing of process defects enable one
to achieve the product quality. However, all defects are
not of same nature and thus do not have same impact
on the quality of the product. Defect Prevention is one
of the most significant activities in the software
development process. An analysis of defects at the early
stage reduces the time, cost, and the resources required
for rework [8][9]
The consciousness of defect patterns enables to identify
majority of defects close to defect inception point. In fact

Li Meng, Xiaoyuan He, and Sontakke Ashok [10]
emphasize on defect prevention. Ching-Pao Chang,
Chih-Ping Chu, and Yu-Fang Yeh [11] explain defect
prevention as the prevention of defect occurrences in
advance and that it is not early defect detection.

Research Methodology
This research has conducted an empirical investigation
on various software industries. Since, population of
software is huge and industries developing software is
also huge, this research narrowed down to matured
industries where defect management process is well in
implementation, Thus, all software industries
investigated were certified as CMMI Level 4 and 5
industries. Also, in order to reduce the type of projects
that got developed in these industries, this research
further narrowed down to analyze non-critical
applications. The reason behind this is critical
applications will not have defects as they are threat to
life and value of the country such as medical software
projects, defense projects involving software
components, space crafts, and missiles etc where
software is involved. Therefore, this research aimed at
investigating only non-critical applications.

Yet again, this population of non-critical applications is
also so huge that this research again narrowed down
towards investigating applications from the domain of
healthcare, retail and telecom projects. The research
started with collecting data for these projects under the
assumptions of projects being developed using common
technology, platform, programming language, tools and
process models. The data was collected from various
sources as defect prevention centers, logs, developers,
project managers, quality assurance team and so on.
Data was collected using telephone, mails, personal
contacts, interviews and face to face communications.
Having obtained the data using the templates made for
data collection, the data was analyzed from the
perspective of customer satisfaction, project success and
so on.

Research Work

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 6, Issue 3, March-2015 758
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

The aim of this research is to comprehend the impact of
pre production defects during software development
with the main area of focus to be on impact of existence
of high severity defects as defect leak. Defect leak are
defect escape from pre production cycle to post
production cycle.

Table 1 depicts randomly sampled projects from the
telecom domain. The table provides information about

total project development time, cost for developing the
entire project, complexity of the project, number of
defects captured during the production cycle, number
of defect classification, number of defect escapes,
number of customer reported defects and customer
satisfaction index of every project. Projects in the table
are arranged in ascending order of total project
development time since complexity is same for several
projects.

Table 1 Pre Production defect profile for Telecom domain projects

Domain Parameters
Project-

1

Project-

2

Project-

3

Project-

4

Project-

5

project-

6

Project-

7

Proejct-

8

Project-

9

Project-

10

Telecom

Project hours

of

development

(*)

1260 1390 1460 1475 1890 2140 2850 3250 3440 4100

Cost (**) 1400 1400 1800 1400 2100 16270 2900 3700 3200 4200

Complexity

(***)
3 3 3 3 3 3 4 4 4 4

of defects

captured
67 72 79 62 91 84 92 107 99 114

of defects

classification
6P1 9P1 13P1 8P1 14P1 14P1 17P1 19P1 19P1 21P1

of escapes 3 2 4 2 4 3 5 5 5 5

customer

reported

defects

1 1 1 1 2 1 2 3 3 3

customer

satisfaction

index(CSI)

9.3 9.2 9.1 9.3 9.2 9.2 9.2 9.1 8.9 9

(*)- Measured in Man hours; (**) – Measured in US Dollars; (***) – Measured on a scale of 1 to 5
Inferences from Table 1
It was observed from the projects that success of any
project depends upon customer satisfaction index.
Customer satisfaction index is all the time evaluated in
these industries with a rate of 1 to 10 where 1 indicates
extremely poor customer satisfaction level and 10

indicate total customer satisfaction. A level of 9 and
above is always expected in all highly established
software industries who have sustained in the dynamic
market. An index level of 8 to 9 indicates acceptable
band while below 8 is rework case and projects are
termed as challenged projects. However, a customer

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 6, Issue 3, March-2015 759
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

satisfaction index rated anywhere up to 7 is deemed to
be not tolerable in software industries. Hence,

 Eq(1)

However, from investigation of these data, it was found
out that customer satisfaction index is further
depending only on defect count. This is because,
whenever time increased, cost increased also customer
satisfaction index was high. High indicates 9 and above.
Thus, it was inferred from the data collected randomly
over retail, telecom and healthcare projects that
customer satisfaction in these industries especially
which are at level CMMI 4 and 5 have no troubles with
time or cost or even resources but it only matters with
defect counts. Since, these industries are well
established and hence human resource and technology
support is adequate and therefore time, cost is not an
issue and hence customer satisfaction level due to time,
cost is not a criteria to be looked into. Thus, this research
inferred that

 Eq(2)

Further, this research progressed to analyze if
complexity of the project also has an impact on defect
count. Complexity is measured using either function
points or use cases in all the industries. It was found out
that as complexity increases defect count also increases
but not exponentially. Thus, this study now directed
towards analyzing the type of programmers who write
code and the defect injection possibility from them.
From the study, it was observed that whenever project
complexity is either small or medium, the proportion in
which developers are allocated in the project team has a
pattern.

Further, this research moved to investigate the
experience level of programmers. Table 2 depicts the
randomly sampled telecom projects and their personnel
information. Projects P1 to P3 depicts randomly
sampled projects of small complexity and Projects P4 to
P5 represents medium complexity projects. These
projects are enhancement type of projects which are of
type change request. Table further provides information
about the number of programmers used, their
experience in terms of largely experienced numbers and
average experienced number of programmer5s who are
put into the project.

Table 2. Sampled Projects with project type and programmers profile at implementation phase of software development
Projects P1 P2 P3 P4 P5
ProjDesc Telecom Telecom Telecom Telecom Telecom
Technology Window7 Window7 Window7 Window7 Window7
Prog Lang Java Java Java Java Java
Total Projdevp
time(*)

800 1200 4000 6200 8400

Project
Complexity

Small Small Small medium medium

Project Type
Change
Request

Change
Request

Change
Request

Change
Request

Change
Request

Total No. Progm 5 8 16 19 22

No. of Lr.Exp.
Progm

1 2 3 3 5

Percentage 20% 25% 18.75% 15.78% 22.72%
No.of Avg.Exp.
Progm

2 2 5 7 8

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 6, Issue 3, March-2015 760
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

Percentage 40% 25% 31.25% 36.84% 36.36%

No of Fresher 2 4 8 9 9

Percentage 40% 50% 50% 47.36% 40.90%

ProjDesc- Project Description; Prog Lang- Programming Language; Total Projdevp time- Total Project Development
Time; (*)- measured in person hours; Total No. Progm – Total Number of Programmers; No. of Lr.Exp.Progm – Number
of largely experienced programmers; No. of Avg.Exp.Progm- Number of average experienced programmers

It was observed that nearly 25 percent of developers in
projects having medium and small complexity are
developers having large experience. They are having an
experience level of 8 and above. The team of developers
also comprised of developers having experience
between 2 to 8, who are average experienced
developers. This proportion was found to be up to 40
percent in those projects. The project team comprised of
fresher and less experience developers such as less than
2 years experience in a proportion of up to 50 percent in
these projects.

Having obtained this pattern of developers allocation in
projects by project managers, this investigation further
directed towards knowing the type of defects they
introduced during their code construction time. This is
because all defects will not be of same nature. It was
found that nearly 10 percent of defects injected by these
programmers are blocker type in nature and blocks the
entire application. Nearly 20 percent of defects
introduced by the team of programmers having above-
said proportion in their experiences were critical type of
defects. In these industries, both blocker and critical
type of defects were deemed to be hiving highest
severity since they have ultimate impact on the project
functioning. Hence, they termed these defects under the
severity of P1.

Further, it was found from the data collection that
nearly 40 percent of defects are major type and also 40
percent of defects are minor type. These defects are
introduced by these set of programmers during their
code developing span. Since, they do not block the
functioning of applications, industries consider them
under the severity level medium and call them as P2
type of defects. Programmers of this combination has

also injected defects which are trivial in nature and has
a cosmetic effect which means they do not have any
high or medium impact on functioning of the
applications. They are up to 40 percent in proportion
and hence such defects are called as P3 type of defects.

From the investigation of the data collected across
projects, it was found that customer satisfaction index
was depending on defect count. However, when this
investigation further got into its depth, it was found out
that customer satisfaction index do not just depend on
defect count but it ultimately depends on the type of
defect. Thus, it was apparent that

Eq(3)

Now, it was still under investigation to find out as to
how this P1 type of defects address customer
satisfaction index. Thus, digging more into the research,
it was found that as defect escapes increases P1 type of
defects decreases. This is because defect escape is last
opportunity where quality team and user acceptance
team can unearth defects under the criteria of pre-
production defects. Subsequent to this testing is the
product being installed and deployed at the customer’s
location. Thus, defect escapes enable one to weed out
the pre-production defect after which the defects when
identified in the customer’s site are termed as customer
reported defects. This customer reported defect count
and type of customer reported defect influences
customer satisfaction index. Thus, it was found that

Eq(4)

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 6, Issue 3, March-2015 761
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

Thus, as more number of defects are captured during
pre-production phase, lesser is the number of customer
reported defects. However, it is the type of customer
reported defects which influence customer satisfaction
and hence, it is important to ensure that defect escapes
capture most of the P1 and also P2 type of defects in
order to ascertain total customer satisfaction since P3
defects reported by customers are hardly observed in
these projects. There were few projects which had
variations to the above made inferences since variances
are within the acceptable framework of the application.
All parameters cannot be objectively assed and some
should be subjectively accessed such as documents.
Documents should be evaluated for non ambiguity.

Integration of Knowledge Pod before Code
Construction for Reduction of Pre-Production Defects

Further, moving ahead with the research investigation
on the sampled collected projects from the sampled
industries, it was necessary to analyze these inferences
against the root cause analysis.

This research thus directed towards RCA (Root Cause
Analysis) for the observed defect pattern with the
combination of the programmers in the team. Table 3
thus provides RCA for the pattern observed. These
listing are very generic and the list goes elaborated in
perspective of applications.

 Table 3. Root Cause Analysis for defects injected during code construction phase

Sl No Root Cause Analysis
1 Improper understanding of requirements
2 Missed requirements
3 Coding standards are not followed
4 Syntax errors
5 Errors such as browser compatibility
6 Operating system compatibility

7 System errors

8 Errors due software version
9 Plug in- third party software

10 Logical errors
11 Missed functionality
12 Regression error
13 Insufficient unit testing
14 Unit test results not recorded
15 Unit test defects not fixed
16 Insufficient unit test cases
17 Test data

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 6, Issue 3, March-2015 762
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

18 UI defects

Table 3 infers that defects injected by the combination of
experienced, average experienced and less experienced
programmers in the sampled projects are due to various
reasons. Some of the common reasons are listed in the
table which acts as an awareness module for the
programmers not to inject such defects. Further, this

table throws light on investigating the severity of these
type of defects. Thus, the investigation led towards
analyzing the defects causes which leads to defect types.
Table 4 provides an insight of severity of defects when
defects introduced are due to the above listed reasons.

Table 4. Severity of defect
Sl No Root Cause Analysis Severity of the defect

1 Improper understanding of requirements P1
2 Missed requirements P1
3 Coding standards are not followed P2
4 Syntax errors P1/P2/P3
5 Errors such as browser compatibility P2
6 Operating system compatibility P2

7 System errors P2

8 Errors due software version P2
9 Plug in- third party software P2

10 Logical errors P2
11 Missed functionality P1
12 Regression error P2/P3
13 Insufficient unit testing P2
14 Unit test results not recorded P3
15 Unit test defects not fixed P2
16 Insufficient unit test cases P2
17 Test data P3
18 UI defects P3

Table 4 infers that whenever defects are due to
improper understanding of requirements, missed
requirements, syntax errors, missed functionality and
such type of reasons, the defect injected if not detected
in pre-production cycle will lead towards customer

reported defects having the severity P1. This certainly
brings down the customer satisfaction index. Table
further infers that whenever defects are due to reasons
such as coding standards not followed, syntax errors,
errors due to browser compatibility, operating system

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 6, Issue 3, March-2015 763
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

compatibility, system errors, errors due to software
version, plug in errors due to third party software,
logical errors, regression errors, insufficient testing
leading to defect residual, unit test defects which were
left fixed and defects due to the reasons of insufficient
unit test cases attribute towards P2 type of defects if
undetected during pre-production phase and if they are
identified and reported by the customers when the
product is in the operational state in their locations.

From the table 6 it is further understood that defects
which are introduced by the combination of
programmers in the team which may result due to
syntax errors, unit test results failed to be recorded,
insufficient unit test cases, type of test inputs chosen for
testing and user interface defects are cosmetic in nature.
Hence, these defects needs to be detected in pre-
production phase such that though they are P3, it
should not result as customer reported defects.

This knowledge further enabled this research to
investigate on the probability of which type of
programmers injects what type of defects. This team of
programmers as analyzed in all the projects comprises
of largely experienced developers, average experienced
developers and less experienced or fresher combination
of programmers. Hence, it was required to find out

which type of programmer may inject what severity of
defects. The deep investigations carried out in these
industries across the sample of projects led towards
emerging of probability of type of defects being
introduced by the type of programmers. Table 5
provides the probability of type of defects injected by
the type of programmers.

Table 5. Probable type of defects injected by programmers
 Sl
No

Root Cause Analysis
Severity of the defect

Type of programmers

1 Improper understanding of requirements P1 Largely experienced
2 Missed requirements P1 Largely experienced

3 Coding standards are not followed P2
Average experienced /

Less experienced

4 Syntax errors P1/P2/P3
Average experienced /

Less experienced

5 Errors such as browser compatibility P2
Average experienced /

Less experienced

6 Operating system compatibility P2
Average experienced /

Less experienced

7 System errors P2
Largely experienced /
Average experienced

8 Errors due software version P2
Average experienced /

Less experienced

9 Plug in- third party software P2
Largely experienced /
Average experienced

10 Logical errors P2 Less experienced

11 Missed functionality P1
Largely experienced /
Average experienced

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 6, Issue 3, March-2015 764
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

12 Regression error P2/P3 Less experienced

13 Insufficient unit testing P2
Average experienced /

Less experienced
14 Unit test results not recorded P3 Less experienced
15 Unit test defects not fixed P2 Less experienced

16 Insufficient unit test cases P2
Largely experienced /
Average experienced

17 Test data P3
Average experienced /

Less experienced
18 UI defects P3 Less experienced

Table 5 infers that programmers who have their
experiences in various levels may inject probable type of
defects. The basic reasons for this mode of defect
injection are the type of modules allocated to them for
development. Experienced developers are provided
with responsibilities’ which are at a higher end and
hence their lack of awareness leads towards severe type
of defects.

This research therefore provides a solution where every
developer should be provided with the awareness
checklist which indicates the probable type of defects,
their impact levels and probability of the programmers
injecting them. Figure 1 illustrates the integration of
knowledge pod before code construction for reduction
of pre-production defects during software development
process.

Benefits of knowledge pod when integrated in
software development process

• According to this new approach where the knowledge
pod needs to be integrated into the software
development process especially after design
specifications are provided and before code
implementation actually happens.

• This knowledge pod is a checklist mode of
document which has to be provided to all
programmers irrespective of their experience
levels since it is found out that even an
experienced programmer also injects defects of
high severity.

• Further, developers of all levels of experience
are prone to introduce defects which can be
prevented only through awareness of the type
of defects,

• This knowledge pod therefore acts as a catalyst
where it directs all programmers about the type
of defect which are probable to be introduced
by which type of developers and hence
precautionary actions to be taken not to execute
the same.

• Knowledge pod further acts as an indicator for
developers to know if they had introduced such
type of defects in earlier projects and if so to
enable them to overcome them in further stages
of development

• Knowledge pod acts as a measurement scheme
for developers individually and in team to
check their performance efficiency

• Knowledge pod also enlightens them and acts
as a travel light to proceed with further code
implementation activities using this as a best
practice to be strictly followed

• Knowledge pod also helps management team
to access the efficiency of individual developers
and team in any project and thereby process
visibility can be obtained

• Thus, knowledge pod is both a qualitative and
quantitative framework which enables the
software organizations to deliver software
products having minimal or negligible pre-
production defects and further enables to
produce customer satisfied products.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 6, Issue 3, March-2015 765
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

• Integration of knowledge pod in the software
development process reflects the process
maturity of the company

• Implementation and stringent follow of
knowledge pod ensures continual process
development and assured customer
satisfaction.

Thus, this research finally concluded with coming out
with a novel approach where knowledge pod
comprising of possible type of defect knowledge in
association with the probability of its severity on
customer satisfaction index and also the most likelihood
of knowledge on the type of programmers committing
the type of defect is brought out. This act as a solution to
the problem caused due to post-production defects and
its impact on customer satisfaction index. This solution
is also a strategy to be followed to reduce pre-
production defect during software development
process.

Acknowledgement
The authors would like to thank all the industry
personnel who have helped in coming out with this
research under the framework of Non Disclosure
Agreement.

Conclusion

Software has gained its highest peak of significance in
all domains of human life style. Therefore, software
companies generating software products should ensure
developing of high quality software systems. Since
quality can be visualized in several ways, it is always
essential to look at that angle of quality which has
highest impact on customer satisfaction level. Defect-
free software is one such methods through which
customer satisfaction can be achieved at maximum
level. However, developing defect-free software
especially in non-critical applications is always a dream.
This is because due to the impact of devastation and loss
that gets in critical applications, industries ensure
defect-free software components in such applications.

This research therefore aimed at analyzing the impact of
defects in non-critical applications for which a deep

investigation was carried out in several software
industries. It was proved that defect count alone is not a
factor to influence satisfaction of customers, but it is the
type of defect which is a concern. Proceeding in this
direction, it was essential to know how these defects are
distributed in the code construction phase of software
development since our areas of focus was more on
people than on process.

Hence, further research indicated that the distribution
pattern of programmers in code construction phase
comprised of up to 25 percent largely experienced
developers while up to 40 percent of team were made of
average experienced programmers. The project
developer team also consisted of up to 50 percent being
either less experienced developers or fresher in code
construction activities.

This understanding of team distribution in code
construction phase made this research to progress to
explore the various root causes for the type of defects
being introduced. The knowledge thus gained through
this research is put forth in the form of knowledge pod
and is suggested to be integrated in the software
development process. Integration of knowledge pod
after design specifications but before the start of actual
code construction by the programmers enables these
programmers to gain awareness and transfer
knowledge to them to comprehend the type of defects
and the probability of them getting injected in their
hands. Upon the gain of knowledge, it is a
measurement for these developers to ensure that they
do not introduce such defects and thereby provide a
qualitative code than just a quantitative code. This
research has its limitation where knowledge pod is
applicable only to non-critical applications such as
retail, telecom and healthcare projects. The work is
applicable on platforms and developing environments
as studied in this entire research on the sampled
projects. The work is further limited to legacy projects
where they can be further undertaken for maintenance
or enhancement purposes. The knowledge pod is
provided only to programmers and not across all the
project personnel.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 6, Issue 3, March-2015 766
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

References

[1] Suma V. and Gopalakrishnan Nair T.R.: Effective
Defect Prevention Approach in Software Process
for Achieving Better Quality Levels, International
Conference on Software Engineering, WASET,
Singapore, August 29-31, September 01, 2008.

[2] Suma V.andGopalakrishnan Nair T.R.: Enhanced
Approaches in Defect Detection and Prevention
Strategies in Small and Medium Scale Industries, IEEE
3rd International Conference on Advances in Software
Engineering, Sliema, Malta, October 26-31, 2008

[3] Suma V. and Gopalakrishnan Nair T.R.: Better Defect
Detection and Prevention Through Improved Inspection
and Testing Approach in Small and Medium Scale
Software Industry, International Journal of Productivity
and Quality Management (IJPQM), Vol. 6, No. 1,
2010, pp.71-90.

[4] T. R. Gopalakrishnan Nair, Suma. V, Pranesh Kumar
Tiwari, “Analysis of Test Efficiency during Software
Development Process”, Submitted, 2nd Annual
International Conference on Software Engineering and
Applications (SEA 2011), Singapore, 12th -13th
December 2011

[5] Bary Boehm and Victor R. Basili: Software Defect
Reduction Top 10 List, IEEE Computer, Vol. 34, No.1,
January 2001, pp.135-137
http://www.cebase.org/defectreduction/top10
[6] Brain Randell, Alexander Romanovsky, Cecilia M F
Rubira, Robert J Stroud, Zhizue Wu and JieXu:
Implementation of Blocking Coordinated Atomic
Actions Based on Forward Error Recovery, Journal of
Systems Architecture, Vol. 43, No.10, 1997, pp. 687-699.

[7 Spiewak R. and McRitchie K.: Using Software Quality
Methods to Reduce Cost and Prevent Defects,
CROSSTALK, The journal of Defense Software
Engineering, Vol. 21, No. 12, 2008

[8] Bhagawant Despande, Jawahar J Rao and Suma V,
“Comprehension of Defect Pattern at Code Construction
Phase during Software Development Process”, 3rd
International Conference on Frontiers in Intelligent
Computing Theory & Applications (FICTA), 14th-15th
November, Bhubaneswar, India.Index: Springer, ISI
Proceedings, DBLP, Ulrich's, EI-Compendex, SCOPUS,
Zentralblatt Math, MetaPress
[9] Pattern Analysis of Post Production Defects in
Software IndustryDivakar Harekal, , V. Suma
Proceedings of the 3rd International Conference on
Frontiers of Intelligent Computing: Theory and
Applications (FICTA) 2014 Advances in Intelligent
Systems and Computing Volume 328, 2015, pp 667-671
[10] Li Meng, Xiaoyuan He and Sontakke Ashok: Defect
Prevention-A General Framework and Its Application,
Sixth International Conference on Quality Software
(QSIC'06), Beijing, China, October 27-28, 2006, pp. 281-
286

[11]Ching-Pao Chang, Chih-Ping Chu and Yu-Fang Yeh:
Integrating In-Process Software Defect Prediction with
Association Mining to Discover Defect Pattern,
Information and Software Technology Journal, Vol. 51,
No.2, 2009, pp. 375-384

IJSER

http://www.ijser.org/
http://www.cebase.org/defectreduction/top10
http://link.springer.com/search?facet-author=%22Divakar+Harekal%22
http://link.springer.com/search?facet-author=%22V.+Suma%22
http://link.springer.com/book/10.1007/978-3-319-12012-6
http://link.springer.com/book/10.1007/978-3-319-12012-6
http://link.springer.com/book/10.1007/978-3-319-12012-6
http://link.springer.com/bookseries/11156
http://link.springer.com/bookseries/11156

International Journal of Scientific & Engineering Research, Volume 6, Issue 3, March-2015 767
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

IJSER

http://www.ijser.org/

